The Effects of Electromagnetic Fields on Human Health: Recent Advances and Future

The potential of electromagnetic fields (EMFs) for disease treatment and health enhancement has been actively pursued over the recent decades. This review first provides a general introduction about natural EMFs and related biological effects. Then the recent progress on the EMF treatment of some common diseases (such as cancer, diabetes, wound healing and neurological diseases, etc.) has been carefully reviewed and summarized. Yet, the blindness on the selection of therapeutic EMF parameters still hinders the broad application of EMF therapy. Moreover, the unclear mechanism of EMF function and poor reproducibility of experimental results also remain big challenges in the field of bioelectromagnetics. Bionics is a useful methodology that gains inspiration from nature to serve human life and industry. We have discussed the feasibility of applying bionic approach on the selection of therapeutic EMFs, which is based on the findings of natural EMFs. Finally, we advocate that the detailed information of EMFs and biological samples should be thoroughly recorded in future research and reported in publications. In addition, the publication of studies with negative results should also be allowed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic €32.70 /Month

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Rent this article via DeepDyve

Similar content being viewed by others

Electromagnetic Modulation of Cell Behavior: Unraveling the Positive Impacts in a Comprehensive Review

Article 23 April 2024

The Biological Effects of Long-Term Static Magnetic Field Exposure

Chapter © 2023

Magnetic Field Parameters and Biological Sample Differences That Lead to Differential Bioeffects

Chapter © 2023

Explore related subjects

References

  1. Wertheimer N, Leeper E. Electrical wiring configurations and childhood cancer. American Journal of Epidemiology, 1979, 109, 273–284. ArticleGoogle Scholar
  2. Marino C, Galloni P, Merla C. Biological effects of electromagnetic fields. Reference Module in Materials Science and Materials Engineering, 2016, 1–9.
  3. Krylov V V. Biological effects related to geomagnetic activity and possible mechanisms. Bioelectromagnetics, 2017, 38, 497–510. ArticleGoogle Scholar
  4. Cherry N. Schumann resonances, a plausible biophysical mechanism for the human health effects of solar. Natural Hazards, 2002, 26, 279–331. ArticleGoogle Scholar
  5. Thomson H. Wave therapy. Nature, 2018, 555, 20–22. ArticleGoogle Scholar
  6. Chen B B, Lv J, Wang X Y, Qian R C. Probing the membrane vibration of single living cells by using nanopipettes. Chembiochem, 2019, 21, 650–655. ArticleGoogle Scholar
  7. Tang J Y, Yeh T W, Huang Y T, Wang M H, Jang L S. Effects of extremely low-frequency electromagnetic fields on B16F10 cancer cells. Electromagnetic Biology and Medicine, 2019, 38, 149–157. ArticleGoogle Scholar
  8. Elhalel G, Price C, Fixler D, Shainberg A. Cardioprotection from stress conditions by weak magnetic fields in the Schumann Resonance band. Scientific Reports, 2019, 9, 1645. ArticleGoogle Scholar
  9. Thébault E, Finlay C C, Beggan C D, Alken P, Aubert J, Barrois O, Bertrand F, Bondar T, Boness A, Brocco L. International geomagnetic reference field: The 12th generation. Earth, Planets and Space, 2015, 67, 79. ArticleGoogle Scholar
  10. Qin S Y, Yin H, Yang C L, Dou Y F, Liu Z M, Zhang P, Yu H, Huang Y L, Feng J, Hao J F, Hao J, Deng L Z, Yan X Y, Dong X L, Zhao Z X, Jiang T J, Wang H W, Luo S J, Xie C. A magnetic protein biocompass. Nature Materials, 2016, 15, 217–226. ArticleGoogle Scholar
  11. Zhan S, Merlin C, Boore J L, Reppert S M. The monarch butterfly genome yields insights into long-distance migration. Cell, 2011, 147, 1171–1185. ArticleGoogle Scholar
  12. Ritz T, Thalau P, Phillips J B, Wiltschko R, Wiltschko W. Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature, 2004, 429, 177–180. ArticleGoogle Scholar
  13. Boles L C, Lohmann K J. True navigation and magnetic maps in spiny lobsters. Nature, 2003, 421, 60–63. ArticleGoogle Scholar
  14. Nemec P, Altmann J, Marhold S, Burda H, Oelschlager H H A. Neuroanatomy of magnetoreception: The superior colliculus involved in magnetic orientation in a mammal. Science, 2001, 294, 366–368. ArticleGoogle Scholar
  15. Pavlova G A, Glantz R M, Dennis Willows A O. Responses to magnetic stimuli recorded in peripheral nerves in the marine nudibranch mollusk Tritonia diomedea. Journal of Comparative Physiology A, 2011, 197, 979. ArticleGoogle Scholar
  16. Burda H, Begall S, Červený J, Neef J, Němec P. Extremely low-frequency electromagnetic fields disrupt magnetic alignment of ruminants. PNAS, 2009, 106, 5708–5713. ArticleGoogle Scholar
  17. Wang Y N, Pan Y X, Parsons S, Walker M, Zhang S Y. Bats respond to polarity of a magnetic field. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2901–2905. ArticleGoogle Scholar
  18. Kimchi T, Terkel J. Magnetic compass orientation in the blind mole rat Spalax ehrenbergi. Journal of Experimental Biology, 2001, 204, 751–758. ArticleGoogle Scholar
  19. Marhold S, Wiltschko W, Burda H. A magnetic polarity compass for direction finding in a subterranean mammal. Naturwissenschaften, 1997, 84, 421–423. ArticleGoogle Scholar
  20. Jacobs J A, Kato Y, Matsushita S, Troitskaya V A. Classification of geomagnetic micropulsations. Journal of Geophysical Research, 1964, 69, 180–181. ArticleGoogle Scholar
  21. Cowling T G. Solar-terrestrial physics. Physics Bulletin, 1972, 35, 552. Google Scholar
  22. Cherry N. Schumann resonance and sunspot relations to human health effects in Thailand. Natural Hazards, 2003, 29, 1–11. ArticleGoogle Scholar
  23. Schumann W O. Über die strahlungslosen Eigenschwingungen einer leitenden Kugel, die von einer Luftschicht und einer Ionosphärenhülle umgeben ist. Z Naturforsch, 1952, 7, 149–154. ArticleMATHGoogle Scholar
  24. Besser B P. Synopsis of the historical development of Schumann resonances. Radio Science, 2007, 42, RS2S02. ArticleGoogle Scholar
  25. Sentman D D. Handbook of Atmospheric Electrodynamics, CRC Press, Boca Raton, USA, 1995. Google Scholar
  26. Fdez-Arroyabe P, Fornieles-Callejón J, Santurtún A, Szangolies L, Donner R V. Schumann resonance and cardiovascular hospital admission in the area of Granada, Spain: An event coincidence analysis approach. Science of the Total Environment, 2020, 705, 135813. ArticleGoogle Scholar
  27. Rusov V D, Lukin K A, Zelentsova T N, Linnik E P, Beglaryan M E, Smolyar V P, Filippov M, Vachev B. Can resonant oscillations of the earth ionosphere influence the human brain biorhythm? [2012-08-23], https://beta.arxiv.org/abs/1208.4970.
  28. Mitsutake G, Otsuka K, Hayakawa M, Sekiguchi M, Cornelissen G, Halberg F. Does schumann resonance affect our blood pressure? Biomedicine & Pharmacotherapy, 2005, 59, S10–S14. ArticleGoogle Scholar
  29. Kozlowski M, Marciak-Kozlowska J. Schumann resonance and brain waves: A quantum description. Neuro Quantology, 2015, 13, 196–204. Google Scholar
  30. Hämäläinen M, Hari R, Ilmoniemi R J, Knuutila J, Lounasmaa O V. Magnetoencephalography — Theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics, 1993, 65, 413–497. ArticleGoogle Scholar
  31. Cantero M d R, Perez P L, Smoler M, Etchegoyen C V, Cantiello H F. Electrical oscillations in two-dimensional microtubular structures. Scientific Reports, 2016, 6, 27143. ArticleGoogle Scholar
  32. Jelinek F, Cifra M, Pokorny J, Vanis J, Simsa J, Hasek J, Frydlova I. Measurement of electrical oscillations and mechanical vibrations of yeast cells membrane around 1 kHz. Electromagnetic Biology and Medicine, 2009, 28, 223–232. ArticleGoogle Scholar
  33. Berger H. Über das Elektrenkephalogramm des Menschen. European Archives of Psychiatry and Clinical Neuroscience, 1929, 87, 527–570. Google Scholar
  34. Schmitt H J. History of electroencephalography. IEEE History of Telecommunications Conference, Paris, France, 2008, 78–81.
  35. Proudfoot M, Woolrich M W, Nobre A C, Turner M R. Magnetoencephalography. Practical Neurology, 2014, 14, 336–343. ArticleGoogle Scholar
  36. Fink A, Benedek M. EEG alpha power and creative ideation. Neuroscience & Biobehavioral Reviews, 2014, 44, 111–123. ArticleGoogle Scholar
  37. Dietrich A, Kanso R. A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychological Bulletin, 2010, 136, 822–848. ArticleGoogle Scholar
  38. Feinberg I, Baker T, Leder R, March J D. Response of delta (0–3 Hz) EEG and eye movement density to a night with 100 minutes of sleep. Sleep, 1988, 11, 473–487. Google Scholar
  39. Pilon M, Zadra A, Joncas S, Montplaisir J. Hypersynchronous delta waves and somnambulism: Brain topography and effect of sleep deprivation. Sleep, 2006, 29, 77–84. ArticleGoogle Scholar
  40. Tatum W O, Ellen R. Grass lecture: Extraordinary EEG. The Neurodiagnostic Journal, 2014, 54, 3–21. Google Scholar
  41. Huston R L. A review of electromagnetic activity in cellular mechanics. Advances in Bioscience and Biotechnology, 2016, 7, 360–371. ArticleGoogle Scholar
  42. Zhao Y, Zhan Q M. Electric fields generated by synchronized oscillations of microtubules, centrosomes and chromosomes regulate the dynamics of mitosis and meiosis. Theoretical Biology and Medical Modelling, 2012, 9, 26. ArticleGoogle Scholar
  43. Pokorný J. Electrodynamic activity of healthy and cancer cells. Journal of Physics: Conference Series, 2011, 329, 012007. Google Scholar
  44. Cifra M, Pokorny J, Havelka D, Kucera O. Electric field generated by axial longitudinal vibration modes of micro-tubule. Biosystems, 2010, 100, 122–131. ArticleGoogle Scholar
  45. Pokorny J, Hasek J, Jelinek F. Electromagnetic field of microtubules: Effects on transfer of mass particles and electrons. Journal of Biological Physics, 2005, 31, 501–514. ArticleGoogle Scholar
  46. Singer S J, Nicolson G L. The fluid mosaic model of the structure of cell membranes. Science, 1972, 175, 720–731. ArticleGoogle Scholar
  47. Salbreux G, Joanny J F, Prost J, Pullarkat P. Shape oscillations of non-adhering fibroblast cells. Physical Biology, 2007, 4, 268–284. ArticleGoogle Scholar
  48. Chen C H, Tsai F C, Wang C C, Lee C H. Three-dimensional characterization of active membrane waves on living cells. Physical Review Letters, 2009, 103, 238101. ArticleGoogle Scholar
  49. Liu X L, Liu Z M, Liu Z N, Zhang S J, Bechkoum K, Clark M, Ren L Q. The effects of bio-inspired electromagnetic fields on normal and cancer cells. Journal of Bionic Engineering, 2019, 16, 943–953. ArticleGoogle Scholar
  50. Montagnier L, Aïssa J, Ferris S, Montagnier J L, Lavalléee C. Electromagnetic signals are produced by aqueous nano-structures derived from bacterial DNA sequences. Interdisciplinary Sciences: Computational Life Sciences, 2009, 1, 81–90. Google Scholar
  51. Zhao Y, Zhan Q M. Electric oscillation and coupling of chromatin regulate chromosome packaging and transcription in eukaryotic cells. Theoretical Biology and Medical Modelling, 2012, 9, 27. ArticleGoogle Scholar
  52. Costa F P, de Oliveira A C, Meirelles R, Machado M C C, Zanesco T, Surjan R, Chammas M C, de Souza Rocha M, Morgan D, Cantor A, Zimmerman J, Brezovich I, Kuster N, Barbault A, Pasche B. Treatment of advanced hepatocellular carcinoma with very low levels of amplitude-modulated electromagnetic fields. British Journal of Cancer, 2011, 105, 640–648. ArticleGoogle Scholar
  53. Crocetti S, Beyer C, Schade G, Egli M, Fröhlich J, Franco-Obregön A. Low intensity and frequency pulsed electromagnetic fields selectively impair breast cancer cell viability. PLOS ONE, 2013, 8, e72944. ArticleGoogle Scholar
  54. Cameron I L, Markov M S, Hardman W E. Optimization of a therapeutic electromagnetic field (EMF) to retard breast cancer tumor growth and vascularity. Cancer Cell International, 2014, 14, 125. ArticleGoogle Scholar
  55. Ghadirian R, Madjid Ansari A, Farahmand L, Sanati H, Mesbah Moosavi Z S. A proteomics approach in evaluating extremely low frequency electromagnetic field-induced apoptosis in breast cancer cells. European Journal of Cancer, 2018, 92, S135. ArticleGoogle Scholar
  56. Yadamani S, Neamati A, Homayouni-Tabrizi M, Beyramabadi S A, Yadamani S, Gharib A, Morsali A, Khashi M. Treatment of the breast cancer by using low frequency electromagnetic fields and Mn(II) complex of a Schiff base derived from the pyridoxal. The Breast, 2018, 41, 107–112. ArticleGoogle Scholar
  57. Akbarnejad Z, Eskandary H, Vergallo C, Nematollahi-Mahani S N, Dini L, Darvishzadeh-Mahani F, Ahmadi M. Effects of extremely low-frequency pulsed electromagnetic fields (ELF-PEMFs) on glioblastoma cells (U87). Electromagnetic Biology & Medicine, 2017, 36, 238–247. ArticleGoogle Scholar
  58. Bergandi L, Lucia U, Grisolia G, Granata R, Gesmundo I, Ponzetto A, Paolucci E, Borchiellini R, Ghigo E, Silvagno F. The extremely low frequency electromagnetic stimulation selective for cancer cells elicits growth arrest through a metabolic shift. Biochimica et Biophysica Acta (BBA) — Molecular Cell Research, 2019, 1866, 1389–1397. ArticleGoogle Scholar
  59. Ahmadi-Zeidabadi M, Akbarnejad Z, Esmaeeli M, Masoumi-Ardakani Y, Mohammadipoor-Ghasemabad L, Eskandary H. Impact of extremely low-frequency electromagnetic field (100 Hz, 100 G) exposure on human glioblastoma U87 cells during Temozolomide administration. Electromagnetic Biology and Medicine, 2019, 38, 198–209. ArticleGoogle Scholar
  60. Han Q, Chen R, Wang F J, Chen S, Sun X S, Guan X, Yang Y, Peng B J, Pan X D, Li J F, Yi W J, Li P, Zhang H W, Feng D F, Chen A, Li X H, Li S H, Yin Z M. Pre-exposure to 50 Hz-electromagnetic fields enhanced the antiproliferative efficacy of 5-fluorouracil in breast cancer MCF-7 cells. PLOS ONE, 2018, 13, e0192888. ArticleGoogle Scholar
  61. Baharara J, Hosseini N, Farzin T R. Extremely low frequency electromagnetic field sensitizes cisplatin-resistant human ovarian adenocarcinoma cells via P53 activation. Cytotechnology, 2016, 68, 1403–1413. ArticleGoogle Scholar
  62. Castello P R, Hill I, Sivo F, Portelli L, Barnes F, Usselman R, Martino C F. Inhibition of cellular proliferation and enhancement of hydrogen peroxide production in fibrosarcoma cell line by weak radio frequency magnetic fields. Bioelectromagnetics, 2014, 35, 598–602. ArticleGoogle Scholar
  63. Jimenez H, Wang M H, Zimmerman J W, Pennison M J, Sharma S, Surratt T, Xu Z X, Brezovich I, Absher D, Myers R M, DeYoung B, Caudell D L, Chen D Q, Lo H W, Lin H K, Godwin D W, Olivier M, Ghanekar A, Pasche B C. Tumour-specific amplitude-modulated radiofrequency electromagnetic fields induce differentiation of hepatocellular carcinoma via targeting Cav3.2 T-type voltage-gated calcium channels and Ca 2+ influx. EBioMedicine, 2019, 44, 209–224. ArticleGoogle Scholar
  64. Buckner C A, Buckner A L, Koren S A, Persinger M A, Lafrenie R M. Exposure to a specific time-varying electromagnetic field inhibits cell proliferation via cAMP and ERK signaling in cancer cells. Bioelectromagnetics, 2018, 39, 217–230. ArticleGoogle Scholar
  65. Garg A A, Jones T H, Moss S M, Mishra S, Kaul K, Ahirwar D K, Ferree J, Kumar P, Subramaniam D, Ganju R K, Subramaniam V V, Song J W. Electromagnetic fields alter the motility of metastatic breast cancer cells. Communications Biology, 2019, 2, 303. ArticleGoogle Scholar
  66. Stupp R, Mason W P, van den Bent M J, Weller M, Fisher B, Taphoorn M J B, Belanger K, Brandes A A, Marosi C, Bogdahn U, Mirimanoff M D. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. New England Journal of Medicine, 2005, 352, 987–996. ArticleGoogle Scholar
  67. Kirson E D, Dbalý V, Tovarys F, Vymazal J, Soustiel J F, Itzhaki A, Mordechovich D, Steinberg-Shapira S, Gurvich Z, Schneiderman R, Wasserman Y, Salzberg M, Ryffel B, Goldsher D, Dekel E, Palti Y. Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10152–10157. ArticleGoogle Scholar
  68. Kirson E D, Schneiderman R S, Dbaly V, Tovarys F, Vy-mazal J, Itzhaki A, Mordechovich D, Gurvich Z, Shmueli E, Goldsher D, Wasserman Y, Palti Y. Chemotherapeutic treatment efficacy and sensitivity are increased by adjuvant alternating electric fields (TTFields). BMC Medical Physics, 2009, 9, 1. ArticleGoogle Scholar
  69. Stupp R, Taillibert S, Kanner A A, Kesari S, Steinberg D M, Toms S A, Taylor L P, Lieberman F, Silvani A, Fink K L, Barnett G H, Zhu J J, Henson J W, Engelhard H H, Chen T C, Tran D D, Sroubek J, Tran N D, Hottinger A F, Landolfi J, Desai R, Caroli M, Kew Y, Honnorat J, Idbaih A, Kirson E D, Weinberg U, Palti Y, Hegi M E, Ram Z. Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: A randomized clinical trial. JAMA, 2015, 314, 2535–2543. ArticleGoogle Scholar
  70. Stupp R, Taillibert S, Kanner A, Read W, Steinberg D, Lhermitte B, Toms S, Idbaih A, Ahluwalia M S, Fink K, Meco F D, Lieberman F, Zhu J J, Stragliotto G, Tran D, Brem S, Hottinger A, Kirson E D, Lavy-Shahaf G, Weinberg U, Kim C Y, Paek S H, Nicholas G, Bruna J, Hirte H, Weller M, Palti Y, Hegi M E, Ram Z. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: A randomized clinical trial. JAMA, 2017, 318, 2306–2316. ArticleGoogle Scholar
  71. Guzauskas G F, Salzberg M, Wang B C. Estimated lifetime survival benefit of tumor treating fields and temozolomide for newly diagnosed glioblastoma patients. CNS Oncology, 2018, 7, CNS23. ArticleGoogle Scholar
  72. Kirson E D, Gurvich Z, Schneiderman R, Dekel E, Itzhaki A, Wasserman Y, Schatzberger R, Palti Y. Disruption of cancer cell replication by alternating electric fields. Cancer Research, 2004, 64, 3288–3295. ArticleGoogle Scholar
  73. Kirson E D, Giladi M, Gurvich Z, Itzhaki A, Mordechovich D, Schneiderman R S, Wasserman Y, Ryffel B, Goldsher D, Palti Y. Alternating electric fields (TTFields) inhibit metastatic spread of solid tumors to the lungs. Clinical & Experimental Metastasis, 2009, 26, 633–640. ArticleGoogle Scholar
  74. Berkelmann L, Bader A, Meshksar S, Dierks A, Hatipoglu Majernik G, Krauss JK, Schwabe K, Manteuffel D, Ngezahayo A. Tumour-treating fields (TTFields): Investigations on the mechanism of action by electromagnetic exposure of cells in telophase/cytokinesis. Scientific Reports, 2019, 9, 7362. ArticleGoogle Scholar
  75. Chen Y B, Li J, Qi Y, Miao X, Zhou Y, Ren D, Guo G Z. The effects of electromagnetic pulses (EMP) on the bioactivity of insulin and a preliminary study of mechanism. International Journal of Radiation Biology, 2010, 86, 22–26. ArticleGoogle Scholar
  76. Bahaoddini A, Mohabatkar H, Nikfarjam A, Keshtgar S. Effect of exposure to low frequency electromagnetic field on the plasma glucose, insulin, triglyceride and cholesterol of male rats. Journal of Applied Animal Research, 2011, 34, 179–180. ArticleGoogle Scholar
  77. Ocal I, Kalkan T, Gunay I. Effects of alternating magnetic field on the metabolism of the healthy and diabetic organisms. Brazilian Archives of Biology and Technology, 2008, 51, 523–530. ArticleGoogle Scholar
  78. Sakurai T, Yoshimoto M, Koyama S, Miyakoshi J. Exposure to extremely low frequency magnetic fields affects insulin-secreting cells. Bioelectromagnetics, 2008, 29, 118–124. ArticleGoogle Scholar
  79. Nafisi S, Nezhady M A, Asghari M H. Comparative and mixture effect of cynodon dactylon, electroMagnetic field and insulin on diabetic mouse. Balkan medical journal, 2012, 29, 345–348. ArticleGoogle Scholar
  80. Suhariningsih, Notobroto H B, Winarni D, Hussein S A, Prijo T A. Permanent magnetic field, direct electric field, and infrared to reduce blood glucose level and hepatic function in mus musculus with diabetic mellitus. Journal of Physics: Conference Series, 2017, 853, 012024. Google Scholar
  81. Khaki A A, Ali-Hemmati A, Nobahari R. A study of the effects of electromagnetic field on islets of langerhans and insulin release in rats. Crescent journal of medical and biological sciences, 2015, 2, 1–5. Google Scholar
  82. Farashi S. Interaction between pancreatic β cell and electromagnetic fields: A systematic study toward finding the natural frequency spectrum of β cell system. Electromagnetic Biology and Medicine, 2017, 36, 341–356. ArticleGoogle Scholar
  83. Farashi S, Sasanpour P, Rafii-Tabar H. Interaction of low frequency external electric fields and pancreatic β-cell: A mathematical modeling approach to identify the influence of excitation parameters. International journal of radiation biology, 2018, 94, 1038–1048. ArticleGoogle Scholar
  84. Cheing G L Y, Li X, Huang L, Kwan R L C, Cheung K K. Pulsed electromagnetic fields (PEMF) promote early wound healing and myofibroblast proliferation in diabetic rats. Bioelectromagnetics, 2014, 35, 161–169. ArticleGoogle Scholar
  85. Choi H M C, Cheung A K K, Ng G Y F, Cheing G L Y. Effects of pulsed electromagnetic field (PEMF) on the tensile biomechanical properties of diabetic wounds at different phases of healing. PLoS One, 2018, 13, e0191074. ArticleGoogle Scholar
  86. Yang J, Sun L, Fan X, Yin B, Kang Y, An S, Tang L. Pulsed electromagnetic fields alleviate streptozotocininduced diabetic muscle atrophy. Molecular Medicine Reports, 2018, 18, 1127–1133. Google Scholar
  87. Jing D, Cai J, Shen G, Huang J, Li F, Li J, Lu L, Luo E, Xu Q. The preventive effects of pulsed electromagnetic fields on diabetic bone loss in streptozotocin-treated rats. Osteoporosis International, 2011, 22, 1885–1895. ArticleGoogle Scholar
  88. Cai J, Li W, Sun T, Li X, Luo E, Jing D. Pulsed electromagnetic fields preserve bone architecture and mechanical properties and stimulate porous implant osseointegration by promoting bone anabolism in type 1 diabetic rabbits. Osteoporosis International, 2018, 29, 1177–1191. ArticleGoogle Scholar
  89. Han Y, Yan Z D, Ge S H. Promotional effects of exogenous stimulation with pulsed electromagnetic fields on skin wound healing in diabetic rats. Journal of Hainan Medical University, 2019, 5, 1–5. Google Scholar
  90. Goudarzi I, Hajizadeh S, Salmani M E, Abrari K. Pulsed electromagnetic fields accelerate wound healing in the skin of diabetic rats. Bioelectromagnetics, 2010, 31, 318–323. Google Scholar
  91. Gozen H, Demirel C, Akan M, Tarakcioglu M. Effects of pulsed electromagnetic fields on lipid peroxidation and antioxidant levels in blood and liver of diabetic rats. European Journal of Therapeutics, 2018, 23, 152–158. ArticleGoogle Scholar
  92. Mert T, Gunay I, Ocal I. Neurobiological effects of pulsed magnetic field on diabetes-induced neuropathy. Bioelectromagnetics, 2010, 31, 39–47. Google Scholar
  93. Aikins A R, Hong S W, Kim H J, Yoon C H, Chung J H, Kim M, Kim C W. Extremely low-frequency electromagnetic field induces neural differentiation of hBM-MSCs through regulation of (Zn)-metallothionein-3. Bioelectromagnetics, 2017, 38, 364–373. ArticleGoogle Scholar
  94. Cho H, Seo Y K, Yoon H H, Kim S C, Kim S M, Song K Y, Park J K. Neural stimulation on human bone marrow-derived mesenchymal stem cells by extremely low frequency electromagnetic fields. Biotechnology Progress, 2012, 28, 1329–1335. ArticleGoogle Scholar
  95. Park J E, Seo Y K, Yoon H H, Kim C W, Park J K, Jeon S. Electromagnetic fields induce neural differentiation of human bone marrow derived mesenchymal stem cells via ROS mediated EGFR activation. Neurochemistry International, 2013, 62, 418–424. ArticleGoogle Scholar
  96. Bai W F, Xu W C, Feng Y, Huang H, Li X P, Deng C Y, Zhang M S. Fifty-hertz electromagnetic fields facilitate the induction of rat bone mesenchymal stromal cells to differentiate into functional neurons. Cytotherapy, 2013, 15, 961–970. ArticleGoogle Scholar
  97. Cheng Y N, Dai Y Q, Zhu X M, Xu H C, Cai P, Xia R H, Mao L Z, Zhao B Q, Fan W Y. Extremely low-frequency electromagnetic fields enhance the proliferation and differentiation of neural progenitor cells cultured from ischemic brains. Neuroreport, 2015, 26, 896–902. ArticleGoogle Scholar
  98. Tasset I, Medina F J, Jimena I, Aguera E, Gascon F, Feijoo M, Sanchez-Lopez F, Luque E, Pena J, Drucker-Colin R, Tunez I. Neuroprotective effects of extremely low-frequency electromagnetic fields on a Huntington’s disease rat model: Effects on neurotrophic factors and neuronal density. Neuroscience, 2012, 209, 54–63. ArticleGoogle Scholar
  99. Lei T, Jing D, Xie K N, Jiang M G, Li F J, Cai J, Wu X M, Tang C, Xu Q L, Liu J, Guo W, Shen G H, Luo E P. Therapeutic effects of 15 Hz pulsed electromagnetic field on diabetic peripheral neuropathy in streptozotocin-treated rats. PLoS One, 2013, 8, e61414. ArticleGoogle Scholar
  100. Kavlak E, Belge F, Unsal C, Uner A G, Cavlak U, Comlekci S. Effects of pulsed electromagnetic field and swimming exercise on rats with experimental sciatic nerve injury. Journal of Physical Therapy Science, 2014, 26, 1355–1361. ArticleGoogle Scholar
  101. Urnukhsaikhan E, Mishig-Ochir T, Kim S C, Park J K, Seo Y K. Neuroprotective effect of low frequency-pulsed electromagnetic fields in ischemic stroke. Applied Biochemistry Biotechnology, 2017, 181, 1360–1371. ArticleGoogle Scholar
  102. Podda M V, Leone L, Barbati S A, Mastrodonato A, Li Puma D D, Piacentini R, Grassi C. Extremely low-frequency electromagnetic fields enhance the survival of newborn neurons in the mouse hippocampus. European Journal Neuroscience, 2014, 39, 893–903. ArticleGoogle Scholar
  103. Karimi S A, Salehi I, Shykhi T, Zare S, Komaki A. Effects of exposure to extremely low-frequency electromagnetic fields on spatial and passive avoidance learning and memory, anxiety-like behavior and oxidative stress in male rats. Behavioural Brain Research, 2019, 359, 630–638. ArticleGoogle Scholar
  104. Li Y, Zhang Y C, Wang W H, Zhang Y X, Yu Y, Cheing G L Y, Pan W. Effects of pulsed electromagnetic fields on learning and memory abilities of STZ-induced dementia rats. Electromagnetic Biology and Medicine, 2019, 38, 123–130. ArticleGoogle Scholar
  105. Hatef B, Hashemirad F, Meftahi G H, Simorgh L, Jahromi S R, Rahimi F, Togha M. The efficiency of pulsed electromagnetic field in refractory migraine headaches: A randomized, single-blinded, placebo-controlled, parallel group. International Journal of Clinical Trials, 2016, 3, 24–31. ArticleGoogle Scholar
  106. Paolucci T, Piccinini G, Nusca S M, Marsilli G, Mannocci A, La Torre G, Saraceni V M, Vulpiani M C, Villani C. Efficacy of dietary supplement with nutraceutical composed combined with extremely-low-frequency electromagnetic fields in carpal tunnel syndrome. Journal of Physical Therapy Science, 2018, 30, 777–784. ArticleGoogle Scholar
  107. Ikehara T, Yamaguchi H, Miyamoto H. Effects of electromagnetic fields on membrane ion transport of cultured cells. The Journal of Medical Investigation: JMI, 1998, 45, 47–56. Google Scholar
  108. Selvam R, Ganesan K, Raju K V S N, Gangadharan A C, Manohar B M, Puvanakrishnan R. Low frequency and low intensity pulsed electromagnetic field exerts its antiinflammatory effect through restoration of plasma membrane calcium ATPase activity. Life Sciences, 2007, 80, 2403–2410. ArticleGoogle Scholar
  109. Ross C L, Pettenati M J, Procita J, Cathey L, George S K, Almeida-Porada G. Evaluation of cytotoxic and genotoxic effects of extremely low-frequency electromagnetic field on mesenchymal stromal cells. Global Advances in Health and Medicine, 2018, 7, 1–7. ArticleGoogle Scholar
  110. Ross C L, Ang D C, Almeida-Porada G. Targeting mesenchymal stromal cells/pericytes (MSCs) with pulsed electromagnetic field (PEMF) has the potential to treat rheumatoid arthritis. Frontiers in Immunology, 2019, 10, 266. ArticleGoogle Scholar
  111. Akan Z, Aksu B, Tulunay A, Bilsel S, Inhan-Garip A. Extremely low-frequency electromagnetic fields affect the immune response of monocyte-derived macrophages to pathogens. Bioelectromagnetics, 2010, 31, 603–612. ArticleGoogle Scholar
  112. Ross C L, Harrison B S. Effect of pulsed electromagnetic field on inflammatory pathway markers in RAW 264.7 murine macrophages. Journal Inflammation Research, 2013, 6, 45–51. ArticleGoogle Scholar
  113. Kubat N J, Moffett J, Fray L M. Effect of pulsed electromagnetic field treatment on programmed resolution of inflammation pathway markers in human cells in culture. Journal Inflammation Research, 2015, 8, 59–69. Google Scholar
  114. Merighi S, Gessi S, Bencivenni S, Battistello E, Vincenzi F, Setti S, Cadossi M, Borea P A, Cadossi R, Varani K. Signaling pathways involved in anti-inflammatory effects of pulsed electromagnetic field in microglial cells. Cytokine, 2020, 125, 154777. ArticleGoogle Scholar
  115. Cichon N, Saluk-Bijak J, Miller E, Sliwinski T, Synowiec E, Wigner P, Bijak M. Evaluation of the effects of extremely low frequency electromagnetic field on the levels of some inflammatory cytokines in post-stroke patients. Journal of Rehabilitation Medicine, 2019, 51, 854–860. Google Scholar
  116. Cichon N, Bijak M, Czarny P, Miller E, Synowiec E, Sliwinski T, Saluk-Bijak J. Increase in blood levels of growth factors involved in the neuroplasticity process by using an extremely low frequency electromagnetic field in post-stroke patients. Frontiers in Aging Neuroscience, 2018, 10, 294. ArticleGoogle Scholar
  117. Mahaki H, Tanzadehpanah H, Jabarivasal N, Sardanian K, Zamani A. A review on the effects of extremely low frequency electromagnetic field (ELF-EMF) on cytokines of innate and adaptive immunity. Electromagnetic Biology and Medicine, 2019, 38, 84–95. ArticleGoogle Scholar
  118. Bagnato G L, Miceli G, Marino N, Sciortino D, Bagnato G F. Pulsed electromagnetic fields in knee osteoarthritis: A double blind, placebo-controlled, randomized clinical trial. Rheumatology, 2016, 55, 755–762. ArticleGoogle Scholar
  119. Corallo C, Volpi N, Franci D, Vannoni D, Leoncini R, Landi G, Guarna M, Montella A, Albanese A, Battisti E, Fioravanti A, Nuti R, Giordano N. Human osteoarthritic chondrocytes exposed to extremely low-frequency electromagnetic fields (ELF) and therapeutic application of musically modulated electromagnetic fields (TAMMEF) systems: A comparative study. Rheumatology International, 2013, 33, 1567–1575. ArticleGoogle Scholar
  120. Wang T, Yang L, Jiang J, Liu Y, Fan Z, Zhong C, He C. Pulsed electromagnetic fields: Promising treatment for osteoporosis. Osteoporosis International, 2019, 30, 267–276. ArticleGoogle Scholar
  121. Liu H F, Yang L, He H C, Zhou J, Liu Y, Wang C Y, Wu Y C, He C Q. Pulsed electromagnetic fields on postmenopausal osteoporosis in southwest China: A randomized, active-controlled clinical trial. Bioelectromagnetics, 2013, 34, 323–332 ArticleGoogle Scholar
  122. Liu H F, He H C, Yang L, Yang Z Y, Yao K, Wu Y C, Yang X B, He C Q. Pulsed electromagnetic fields for postmenopausal osteoporosis and concomitant lumbar osteoarthritis in southwest China using proximal femur bone mineral density as the primary endpoint: Study protocol for a randomized controlled trial. Trials, 2015, 16, 265. ArticleGoogle Scholar
  123. Tong J, Sun L J, Zhu B, Fan Y, Ma X F, Yu L Y, Zhang J B. Pulsed electromagnetic fields promote the proliferation and differentiation of osteoblasts by reinforcing intracellular calcium transients. Bioelectromagnetics, 2017, 38, 541–549. ArticleGoogle Scholar
  124. Yuan J, Xin F, Jiang W X. Underlying signaling pathways and therapeutic applications of pulsed electromagnetic fields in bone repair. Cellular Physiology Biochemistry, 2018, 46, 1581–1594. ArticleGoogle Scholar
  125. Daish C, Blanchard R, Fox K, Pivonka P, Pirogova E. The Application of pulsed electromagnetic fields (PEMFs) for bone fracture repair: past and perspective findings. Annals of Biomedical Engineering, 2018, 46, 525–542. ArticleGoogle Scholar
  126. Yan J L, Zhou J, Ma H P, Ma X N, Gao Y H, Shi W G, Fang Q Q, Ren Q, Xian C J, Chen K M. Pulsed electromagnetic fields promote osteoblast mineralization and maturation needing the existence of primary cilia. Molecular and Cellular Endocrinology, 2015, 404, 132–140. ArticleGoogle Scholar
  127. Xie Y F, Shi W G, Zhou J, Gao Y H, Li S F, Fang Q Q, Wang M G, Ma H P, Wang J F, Xian C J, Chen K M. Pulsed electromagnetic fields stimulate osteogenic differentiation and maturation of osteoblasts by upregulating the expression of BMPRII localized at the base of primary cilium. Bone, 2016, 93, 22–32. ArticleGoogle Scholar
  128. Nayak S, Dey T, Naskar D, Kundu S C. The promotion of osseointegration of titanium surfaces by coating with silk protein sericin. Biomaterials, 2013, 34, 2855–2864 ArticleGoogle Scholar
  129. Jing D, Zhai M M, Tong S C, Xu F, Cai J, Shen G H, Wu Y, Li X K, Xie K N, Liu J, Xu Q L, Luo E P. Pulsed electromagnetic fields promote osteogenesis and osseointegration of porous titanium implants in bone defect repair through a Wnt/β-catenin signaling-associated mechanism. Scientific Reports, 2016, 6, 32045. ArticleGoogle Scholar
  130. Seeliger C, Falldorf K, Sachtleben J, Van Griensven M. Low-frequency pulsed electromagnetic fields significantly improve time of closure and proliferation of human tendon fibroblasts. European Journal of Medical Research, 2014, 19, 37. ArticleGoogle Scholar
  131. Parker R, Markov M. The treatment of tendon injury with electromagnetic fields evidenced by advanced ultrasound image processing. Electromagnetic Biology and Medicine, 2015, 34, 233–237. ArticleGoogle Scholar
  132. Tucker J J, Cirone J M, Morris T R, Nuss C A, Huegel J, Waldorff E I, Zhang N L, Ryaby J T, Soslowsky L J. Pulsed electromagnetic field therapy improves tendon-to-bone healing in a rat rotator cuff repair model. Journal of Orthopaedic Research, 2017, 35, 902–909. ArticleGoogle Scholar
  133. Marmotti A, Peretti G M, Mattia S, Mangiavini L, de Girolamo L, Vigano M, Setti S, Bonasia D E, Blonna D, Bellato E, Ferrero G, Castoldi F. Pulsed electromagnetic fields improve tenogenic commitment of umbilical cord-derived mesenchymal stem cells: A potential strategy for tendon repair — An in vitro study. Stem Cells International, 2018, 2018, 9048237. ArticleGoogle Scholar
  134. Xu H X, Zhang J, Lei Y T, Han Z Y, Rong D M, Yu Q, Zhao M, Tian J. Low frequency pulsed electromagnetic field promotes C2C12 myoblasts proliferation via activation of MAPK/ERK pathway. Biochemical and Biophysical Research Communications, 2016, 479, 97–102. ArticleGoogle Scholar
  135. Saliev T, Mustapova Z, Kulsharova G, Bulanin D, Mikhalovsky S. Therapeutic potential of electromagnetic fields for tissue engineering and wound healing. Cell Proliferation, 2014, 47, 485–493. ArticleGoogle Scholar
  136. Pesce M, Patruno A, Speranza L, Reale M. Extremely low frequency electromagnetic field and wound healing: Implication of cytokines as biological mediators. European Cytokine Network, 2013, 24, 1–10. ArticleGoogle Scholar
  137. Bai W F, Xu W C, Zhu H X, Huang H, Wu B, Zhang M S. Efficacy of 50 Hz electromagnetic fields on human epidermal stem cell transplantation seeded in collagen sponge scaffolds for wound healing in a murine model. Bioelectromagnetics, 2017, 38, 204–212. ArticleGoogle Scholar
  138. Ma K C, Baumhauer J F. Pulsed electromagnetic field treatment in wound healing. Current Orthopaedic Practice, 2013, 24, 487–492. ArticleGoogle Scholar
  139. Guerriero F, Botarelli E, Mele G, Polo L, Zoncu D, Renati P, Sgarlata C, Rollone M, Ricevuti G, Maurizi N, Francis M, Rondanelli M, Perna S, Guido D, Mannu P. Effectiveness of an innovative pulsed electromagnetic fields stimulation in healing of untreatable skin ulcers in the frail elderly: Two case reports. Case Reports in Dermatological Medicine, 2015, 2015, 1–6. ArticleGoogle Scholar
  140. Patruno A, Ferrone A, Costantini E, Franceschelli S, Pesce M, Speranza L, Amerio P, D’Angelo C, Felaco M, Grilli A, Reale M. Extremely low-frequency electromagnetic fields accelerates wound healing modulating MMP-9 and inflammatory cytokines. Cell Prolifertion, 2018, 51, e12432. ArticleGoogle Scholar
  141. Costantini E, Sinjari B, D’Angelo C, Murmura G, Reale M, Caputi S. Human gingival fibroblasts exposed to extremely low-frequency electromagnetic fields: In vitro model of wound-healing improvement. International Journal Molecular Sciences, 2019, 20, 2108. ArticleGoogle Scholar
  142. Sharma S, Rais A, Sandhu R, Nel W, Ebadi M. Clinical significance of metallothioneins in cell therapy and nano-medicine. International Journal of Nanomedicine, 2013, 8, 1477–1488. ArticleGoogle Scholar
  143. Eraslan G, Bilgili A, Akdogan M, Yarsan E, Essiz D, Altintas L. Studies on antioxidant enzymes in mice exposed to pulsed electromagnetic fields. Ecotoxicology and Environmental Safety, 2007, 66, 287–289. ArticleGoogle Scholar
  144. Wang C Y, Liu Y, Wang Y, Wei Z J, Suo D M, Ning G Z, Wu Q L, Feng S Q, Wan C X. Low-frequency pulsed electromagnetic field promotes functional recovery, reduces inflammation and oxidative stress, and enhances HSP70 expression following spinal cord injury. Molecular Medicine Reports, 2019, 19, 1687–1693. Google Scholar
  145. Tunez I, Drucker-Colin R, Jimena I, Medina F J, Munoz M D, Pena J, Montilla P. Transcranial magnetic stimulation attenuates cell loss and oxidative damage in the striatum induced in the 3-nitropropionic model of Huntington’s disease. Journal of Neurochemistry, 2006, 97, 619–630. ArticleGoogle Scholar
  146. Tasset I, Perez-Herrera A, Medina F J, Arias-Carrion O, Drucker-Colin R, Tunez I. Extremely low-frequency electromagnetic fields activate the antioxidant pathway Nrf2 in a Huntington’s disease-like rat model. Brain Stimulation, 2013, 6, 84–86. ArticleGoogle Scholar
  147. Balind S R, Selakovic V, Radenovic L, Prolic Z, Janac B. Extremely low frequency magnetic field (50 Hz, 0.5 mT) reduces oxidative stress in the brain of gerbils submitted to global cerebral ischemia. PloS One, 2014, 9, e88921. ArticleGoogle Scholar
  148. Falone S, Marchesi N, Osera C, Fassina L, Comincini S, Amadio M, Pascale A. Pulsed electromagnetic field (PEMF) prevents pro-oxidant effects of H2O2 in SK-N-BE(2) human neuroblastoma cells. International Journal of Radiation Biology, 2016, 92, 281–286. ArticleGoogle Scholar
  149. Cichon N, Bijak M, Miller E, Saluk J. Extremely low frequency electromagnetic field (ELF-EMF) reduces oxidative stress and improves functional and psychological status in ischemic stroke patients. Bioelectromagnetics, 2017, 38, 386–396. ArticleGoogle Scholar
  150. Cichon N, Bijak M, Synowiec E, Miller E, Sliwinski T, Saluk-Bijak J. Modulation of antioxidant enzyme gene expression by extremely low frequency electromagnetic field in post-stroke patients. Scandinavian Journal of Clinical and Laboratory Investigation, 2019, 78, 626–631. ArticleGoogle Scholar
  151. Mahmoudinasab H, Sanie-Jahromi F, Saadat M. Effects of extremely low-frequency electromagnetic field on expression levels of some antioxidant genes in human MCF-7 cells. Molecular Biology Research Communications, 2016, 5, 77–85. Google Scholar
  152. Ehnert S, Fentz A K, Schreiner A, Birk J, Wilbrand B, Ziegler P, Reumann M K, Wang H B, Falldorf K, Nussler A K. Extremely low frequency pulsed electromagnetic fields cause antioxidative defense mechanisms in human osteoblasts via induction of •O2 − and H2O2. Scientific Reports, 2017, 7, 14544. ArticleGoogle Scholar
  153. Bialy D, Wawrzynska M, Bil-Lula I, Krzywonos-Zawadzka A, Sapa-Wojciechowska A, Arkowski J, Wozniak M, Sawicki G. Low frequency electromagnetic field decreases ischemia-reperfusion injury of human cardiomyocytes and supports their metabolic function. Experimental Biology and Medicine, 2018, 243, 809–816. ArticleGoogle Scholar
  154. Hore P J, Mouritsen H. The radical-pair mechanism of magnetoreception. Annual Review of Biophysics, 2016, 45, 299–344. ArticleGoogle Scholar
  155. Fleissner G, Stahl B, Thalau P, Falkenberg G, Fleissner G. A novel concept of Fe-mineral-based magnetoreception: histological and physicochemical data from the upper beak of homing pigeons. Naturwissenschaften, 2007, 94, 631–642. ArticleGoogle Scholar
  156. Panagopoulos D J, Karabarbounis A, Margaritis L H. Mechanism for action of electromagnetic fields on cells. Biochemical and Biophysical Research Communications, 2002, 298, 95–102. ArticleGoogle Scholar
  157. Panagopoulos D J, Messini N, Karabarbounis A, Philippetis A L, Margaritis L H. A mechanism for action of oscillating electric fields on cells. Biochemical & Biophysical Research Communications, 2000, 272, 634–640. ArticleGoogle Scholar
  158. Schulten K, Swenberg C E, Weller A. A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion. Zeitschrift Für Physikalische Chemie, 1978, 111, 1–5. ArticleGoogle Scholar
  159. Bazylinski D A, Frankel R B. Magnetosome formation in prokaryotes. Nature Reviews Microbiology, 2004, 2, 217–230. ArticleGoogle Scholar
  160. Beason R C, Semm P. Does the avian ophthalmic nerve carry magnetic navigational information? Journal of Experimental Biology, 1996, 199, 1241–1244. ArticleGoogle Scholar
  161. Buchachenko AL, Kouznetsov D A, Orlova M A, Markarian A A. Magnetic isotope effect of magnesium in phosphoglycerate kinase phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10793–10796. ArticleGoogle Scholar
  162. Hore P J. Are biochemical reactions affected by weak magnetic fields? Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1357–1358. ArticleGoogle Scholar
  163. Buchachenko A L, Kuznetsov D A. Magnetic field affects enzymatic ATP synthesis. Journal of the American Chemical Society, 2008, 130, 12868–12869. ArticleGoogle Scholar
  164. Buchachenko A L, Orlov A P, Kuznetsov D A, Breslavskaya N N. Magnetic isotope and magnetic field effects on the DNA synthesis. Nucleic Acids Research, 2013, 41, 8300–8307. ArticleGoogle Scholar
  165. Lucia U. Thermodynamics and cancer stationary states. Physica A: Statistical Mechanics and its Applications, 2013, 392, 3648–3653. ArticleMathSciNetMATHGoogle Scholar
  166. Lucia U. Bioengineering thermodynamics of biological cells. Theoretical Biology and Medical Modelling, 2015, 12, 29. ArticleGoogle Scholar
  167. Lucia U, Grisolia G. Second law efficiency for living cells. Frontiers in Bioscience, 2017, 9, 270–275. ArticleGoogle Scholar
  168. Lucia U, Grisolia G, Ponzetto A, Silvagno F. An engineering thermodynamic approach to select the electromagnetic wave effective on cell growth. Journal of Theoretical Biology, 2017, 429, 181–189. ArticleGoogle Scholar
  169. Bustamante C, Chemla Y R, Forde N R, Izhaky D. Mechanical processes in biochemistry. Annual Review of Biochemistry, 2004, 73, 705–748. ArticleGoogle Scholar
  170. Lucia U, Grisolia G. Constructal law and ion transfer in normal and cancer cells. Proceedings of the Romanian Academy Series A — Mathematics Physics Technical Sciences Information Science, 2018, 19, 213–218. MathSciNetGoogle Scholar
  171. Jia B, Xie L, Zheng Q, Yang P F, Zhang W J, Ding C, Qian A R, Shang P. A hypomagnetic field aggravates bone loss induced by hindlimb unloading in rat femurs. PLoS One, 2014, 9, e105604. ArticleGoogle Scholar
  172. Chibisov S M, Breus T K, Levitin A E, Drogova G M. Biological effects of planetary magnetic storms. Biofizika, 1995, 40, 959–968. Google Scholar
  173. Yuan L Q, Wang C, Lu D F, Zhao X D, Tan L H, Chen X. Induction of apoptosis and ferroptosis by a tumor suppressing magnetic field through ROS-mediated DNA damage. Aging, 2020, 12, 3662–3681. ArticleGoogle Scholar
  174. Yuan L Q, Wang C, Zhu K, Li H M, Gu W Z, Zhou D M, Lai J Q, Zhou D, Lv Y, Tofani S, Chen X. The antitumor effect of static and extremely low frequency magnetic fields against nephroblastoma and neuroblastoma. Bioelectromagnetics, 2018, 39, 375–385. ArticleGoogle Scholar
  175. Filipovic N, Djukic T, Radovic M, Cvetkovic D, Curcic M, Markovic S, Peulic A, Jeremic B. Electromagnetic field investigation on different cancer cell lines. Cancer Cell International, 2014, 14, 84. ArticleGoogle Scholar
  176. Chen Y C, Chen C C, Tu W, Cheng Y T, Tseng FG. Design and fabrication of a microplatform for the proximity effect study of localized ELF-EMF on the growth of in vitro HeLa and PC-12 cells. Journal of Micromechanics & Microengineering, 2010, 20, 125023. ArticleGoogle Scholar
  177. Kavak S, Emre M, Meral I, Unlugenc H, Pelit A, Demirkazik A. Repetitive 50 Hz pulsed electromagnetic field ameliorates the diabetes-induced impairments in the relaxation response of rat thoracic aorta rings. International Journal of Radiation Biology, 2009, 85, 672–679. ArticleGoogle Scholar
  178. Hattapoglu E, Batmaz I, Dilek B, Karakoc M, Em S, Cevik R. Efficiency of pulsed electromagnetic fields on pain, disability, anxiety, depression, and quality of life in patients with cervical disc herniation: A randomized controlled study. Turkish Journal of Medical Sciences, 2019, 49, 1095–1101. ArticleGoogle Scholar
  179. Barbault A, Costa F P, Bottger B, Munden R F, Bomholt F, Kuster N, Pasche B. Amplitude-modulated electromagnetic fields for the treatment of cancer: Discovery of tumor-specific frequencies and assessment of a novel therapeutic approach. Journal of Experimental & Clinical Cancer Research, 2009, 28, 51. ArticleGoogle Scholar
  180. Crotty D, Silkstone G, Poddar S, Ranson R, Prina-Mello A, Wilson M T, Coey J M D. Reexamination of magnetic isotope and field effects on adenosine triphosphate production by creatine kinase. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1437–1442. ArticleGoogle Scholar
  181. Buchachenko A. Why magnetic and electromagnetic effects in biology are irreproducible and contradictory? Bioelectromagnetics, 2016, 37, 1–13. ArticleGoogle Scholar
  182. Gubceac N, Vovc V, Lazar G. Effects of electromagnetic field on human’s health — A short review. 3rd International Conference on Nanotechnologies and Biomedical Engineering, Chisinau, Moldova, 2016, 547–550.
  183. White M P, Alcock I, Grellier J, Wheeler B W, Hartig T, Warber S L, Bone A, Depledge M H, Fleming L E. Spending at least 120 minutes a week in nature is associated with good health and wellbeing. Scientific Reports, 2019, 9, 7730. ArticleGoogle Scholar
  184. Wang D L, Wang X S, Xiao R, Liu Y, He R Q. Tubulin assembly is disordered in a hypogeomagnetic field. Biochemical and Biophysical Research Communications, 2008, 376, 363–368. ArticleGoogle Scholar
  185. Mo W C, Zhang Z J, Wang D L, Liu Y, Bartlett P F, He R Q. Shielding of the geomagnetic field alters actin assembly and inhibits cell motility in human neuroblastoma cells. Scientific Reports, 2016, 6, 22624. ArticleGoogle Scholar
  186. Davies A M, Weinberg U, Palti Y. Tumor treating fields: A new frontier in cancer therapy. Annals of the New York Academy of Sciences, 2013, 1291, 86–95. ArticleGoogle Scholar
  187. Adeghate E, Ponery A S, Wahab, A. Effect of electrical field stimulation on insulin and glucagon secretion from the pancreas of normal and diabetic rats. Hormone & Metabolic Research, 2001, 33, 281–289. ArticleGoogle Scholar
  188. Vincenzi F, Targa M, Corciulo C, Gessi S, Merighi S, Setti S, Cadossi R, Borea P A, Varani K. The anti-tumor effect of A3 adenosine receptors is potentiated by pulsed electromagnetic fields in cultured neural cancer cells. PloS One, 2012, 7, e39317. ArticleGoogle Scholar
  189. Cichon N, Czarny P, Bijak M, Miller E, Sliwinski T, Szemraj J, Saluk-Bijak J. Benign effect of extremely low-frequency electromagnetic field on brain plasticity assessed by nitric oxide metabolism during poststroke rehabilitation. Oxidative Medicine and Cellular Longevity, 2017, 2017, 2181942. ArticleGoogle Scholar
  190. Fan W X, Qian F H, Ma Q L, Zhang P, Chen T T, Chen C H, Zhang Y, Deng P, Zhou Z, Yu Z P. 50 Hz electromagnetic field exposure promotes proliferation and cytokine production of bone marrow mesenchymal stem cells. International Journal of Clinical and Experimental Medicine, 2015, 8, 7394–7404. Google Scholar
  191. Varani K, De Mattei M, Vincenzi F, Gessi S, Merighi S, Pellati A, Ongaro A, Caruso A, Cadossi R, Borea PA. Characterization of adenosine receptors in bovine chondrocytes and fibroblast-like synoviocytes exposed to low frequency low energy pulsed electromagnetic fields. Osteoarthritis and Cartilage, 2008, 16, 292–304. ArticleGoogle Scholar
  192. Esposito M, Lucariello A, Costanzo C, Fiumarella A, Giannini A, Riccardi G, Riccio I. Differentiation of human umbilical cord-derived mesenchymal stem cells, WJ-MSCs, into chondrogenic cells in the presence of pulsed electromagnetic fields. In Vivo, 2013, 27, 495–500. Google Scholar
  193. Lu T, Huang Y X, Zhang C, Chai M X, Zhang J. Effect of pulsed electromagnetic field therapy on the osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells. Genetics and Molecular Research, 2015, 14, 11535–11542. ArticleGoogle Scholar
  194. Zhou J, Ming L G, Ge B F, Wang J Q, Zhu R Q, Wei Z, Ma H P, Xian C J, Chen K M. Effects of 50 Hz sinusoidal electromagnetic fields of different intensities on proliferation, differentiation and mineralization potentials of rat osteoblasts. Bone, 2011, 49, 753–761. ArticleGoogle Scholar
  195. Fathi E, Farahzadi R. Enhancement of osteogenic differentiation of rat adipose tissue-derived mesenchymal stem cells by zinc sulphate under electromagnetic field via the PKA, ERK1/2 and Wnt/beta-catenin signaling pathways. PLoS One, 2017, 12, e0173877. ArticleGoogle Scholar
  196. Kwan R L C, Wong W C, Yip S L, Chan K L, Zheng Y P, Cheing G L Y. Pulsed Electromagnetic field therapy promotes healing and microcirculation of chronic diabetic foot ulcers: A pilot study. Advances in Skin & Wound Care, 2015, 28, 212–219. ArticleGoogle Scholar
  197. Vianale G, Reale M, Amerio P, Stefanachi M, Di Luzio S, Muraro R. Extremely low frequency electromagnetic field enhances human keratinocyte cell growth and decreases proinflammatory chemokine production. British Journal of Dermatology, 2008, 158, 1189–1196. ArticleGoogle Scholar
  198. Gomez-Ochoa I, Gomez-Ochoa P, Gomez-Casal F, Cativiela E, Larrad-Mur L. Pulsed electromagnetic fields decrease proinflammatory cytokine secretion (IL-1beta and TNF-alpha) on human fibroblast-like cell culture. Rheumatology International, 2011, 31, 1283–1289. ArticleGoogle Scholar
  199. Ceccarelli G, Bloise N, Mantelli M, Gastaldi G, Fassina L, De Angelis M G, Ferrari D, Imbriani M, Visai L. A comparative analysis of the in vitro effects of pulsed electromagnetic field treatment on osteogenic differentiation of two different mesenchymal cell lineages. Biores Open Access, 2013, 2, 283–294. ArticleGoogle Scholar

Acknowledgment

This work was supported by National Natural Science Foundation of China (51975245 and 52075214), Jilin Provincial Science & Technology Department (20190303039SF), and Key Scientific & Technological Research & Development Projects in Jilin Province (2020C023-3).